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Abstract Red pepper spice (RP) and turmeric (TM) are used
as flavorings in foods and for medicinal purposes. Utilizing a
randomized, doubled-blinded, placebo-controlled, crossover
design (2-week washout), 4-week supplementation with RP
(1 g/d) or TM (2.8 g/d) was tested for influences on inflam-
mation and oxidative stress in 62 overweight/obese (body
mass index≥27 kg/m2) females (40–75 years) with systemic
inflammation (C-reactive protein, CRP≥2 mg/l). Overnight,
fasted blood samples were collected pre- and post-
supplementation, and analyzed for oxidative stress (F2-iso-
prostanes, oxidized low density lipoprotein), inflammation
(CRP and seven inflammatory cytokines), and metabolic pro-
files using gas chromatography–mass spectrometry with mul-
tivariate partial least square discriminant analysis (PLS-DA).
Pre- to post-supplementation measures of inflammation and
oxidative stress for both RP and TM did not differ when
compared to placebo (all interaction effects, P>0.05), and
global metabolic difference scores calculated through PLS-
DAwere non-significant (both spices, Q2Y<0.40). These data
indicate that 4-week supplementation with RP or TM at culi-
nary levels does not alter oxidative stress or inflammation in
overweight/obese females with systemic inflammation, or
cause a significant shift in the global metabolic profile.
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Abbreviations
AIx@75 Augmentation index normalized for a heart rate

of 75 beats/min
ANOVA Analysis of variance
BMI Body mass index
CRP C-reactive protein
CV Coefficient of variance
GC-MS Gas chromatography mass spectrometry
IL Interleukin
IFNγ Interferon gamma
LDL Low-density lipoprotein
PCA Principal component analysis
PLS-DA Partial least square discriminant analysis
RP Red pepper
TM Turmeric
TNFα Tumor necrosis factor alpha
TRPV1 Transient potential receptor vanilloid 1

Introduction

Spices and aromatic herbs are used as flavor enhancers,
colorants, preservatives, and as potential medicinal agents
in the prevention and treatment of disease [1, 2]. Cell culture
and animal experiments support multiple nutraceutical roles
for spices including antioxidant, anti-inflammatory, anti-
pathogenic, hypolipidemic, anticancerigenic, thermogenic,
vascular function, and antidiabetic influences [3]. The un-
derlying mechanisms of spice-related activities are diverse
and may involve the regulation of transcription factors,
cytokines, protein kinases and other enzymes, adhesion
molecules, redox status, and growth factors [4]. Two highly

D. C. Nieman : L. Cialdella-Kam :A. M. Knab :R. A. Shanely
Human Performance Lab, North Carolina Research Campus,
Appalachian State University,
Kannapolis, NC 28081, USA

D. C. Nieman (*)
North Carolina Research Campus,
600 Laureate Way,
Kannapolis, NC 28081, USA
e-mail: niemandc@appstate.edu

Plant Foods Hum Nutr (2012) 67:415–421
DOI 10.1007/s11130-012-0325-x



investigated spices include red pepper spice (RP) and tur-
meric (TM), but human studies with randomized, double
blinded, placebo controlled research designs are limited
[5–9].

The hotness produced by RP is caused by high concen-
trations of capsaicinoids (0.5–1 %) composed mainly of
capsaicin and dihydrocapsaicin [10, 11]. Capsaicin has been
widely studied for its pain-reducing and anti-inflammatory
effects, influence on weight management, and cardiovascu-
lar benefits [10]. The transient potential receptor vanilloid 1
(TRPV1), a non-selective cation channel chemically activated
by capsaicin, may be involved in some aspects of inflamma-
tion control [10]. Intake of capsaicinoids ranges widely
throughout the world, approaching 200 mg/person per day
in some high-consuming countries, but only 1.5 mg/person
per day in the U.S. and Europe [11]. The metabolism of
capsaicinoids occurs primarily in the liver and metabo-
lite formation is catalyzed by a variety of hepatic enzymes
[12].

Turmeric is a plant with creeping roots that are boiled,
dried, and ground into a deep orange-yellow powder com-
monly used as a spice in curries and other South Asian and
Middle Eastern cuisine [13]. TM contains over 300 different
components including the active ingredient curcumin (3–
5 %) [14]. In vitro and animal research shows that curcumin
is a highly pleiotropic molecule capable of interacting with
numerous molecular targets involved in inflammation [3, 4,
13, 14]. Curcumin bioavailability is relatively low, however,
is rapidly cleared and extensively conjugated in the gastro-
intestinal tract and liver [13, 15]. Serum curcumin concentra-
tions peak 1–3 h after ingestion of large doses [15]. TM is
exceptionally high in total antioxidant content, but the
amounts used in the diet may be too small to have a mean-
ingful influence on total antioxidant capacity [16].

Spices have been advanced as anti-inflammatory and
antioxidant agents in the diet to help counteract the effects
of systemic inflammation and the metabolic syndrome
caused by obesity [17], but this hypothesis has not yet been
tested in humans using acceptable study design procedures.
The study hypothesis was that supplementation with RP or
TM would reduce inflammation and oxidative stress, and
improve vascular function in free-living, overweight
females with underlying chronic inflammation (CRP≥2 mg/l).
A crossover design under double-blinded, placebo con-
trolled conditions was utilized with culinary levels of
RP (1 g/d) and TM (2.8 g/d) that would be acceptable
to U.S. adults. Metabolomics is the measurement of
small molecules or metabolites present in biologic sam-
ples such as biofluids, tissues, and cellular extracts to
elucidate the effect of a particular stimulus on metabolic
pathways [18]. The use of metabolomics in nutritional
sciences is gaining momentum, and global metabolomics
profiling was utilized to help capture potential subtle

perturbations in metabolites associated with RP and
TM supplementation.

Materials and Methods

Subjects

Overweight and obese women (n098) (body mass index
(BMI) 27 kg/m2 and higher) between the ages of 40 and
75 years were recruited via mass advertising and screened
for elevated C-reactive protein (CRP) (≥2 mg/l). Sixty-four
subjects were selected following screening, and all but three
completed all aspects of the study. Subjects were apparently
healthy with no overt chronic disease (specifically, coronary
heart disease, stroke, cancer (other than skin), diabetes
mellitus, rheumatoid arthritis), and not on dietary supple-
ments or medications known to influence inflammation (in
particular, non-steroidal anti-inflammatory drugs). Subjects
agreed to maintain normal dietary and physical activity
patterns during the 10-week study (i.e., two 4-week
supplementation periods with a 2-week washout period),
and make no formal attempts to lose body weight.
Written informed consent was obtained from each sub-
ject, and the experimental procedures were approved by
the institutional review board for human studies at Ap-
palachian State University.

Research Design

Subjects were randomized to RP or TM groups, and under
double-blinded procedures ingested RP, TM, or placebo
(PL) supplements daily for four weeks, with randomized
crossover to the opposite condition (spice or PL) following
a 2-week washout period. For each 4-week supplementation
period, body composition, blood pressure, augmentation
index, and blood samples were taken from all subjects pre-
and post-supplementation after an overnight fast between
7:00–9:00 am, and always on the same day of the week. Diet
records, and questionnaire responses to assess potential
adverse effects and adherence to the supplementation regi-
men were administered pre-study, and after each 4-week
supplementation period. The food records were analyzed
using a computerized dietary assessment program (Food
Processor, ESHA Research, Salem, Oregon). The symptom
logs included questions on digestive health (constipation,
heartburn, bloating, diarrhea, and nausea), hunger levels
(morning, afternoon, and evening), energy levels (morning,
afternoon, and evening), sickness (fever, cough, sore throat,
stuffy nose, runny nose, and headache), pain (joint, muscle,
and back), allergies, stress level, focus/concentration, and
overall well-being. Subjects indicated responses using a 12-
point Likert scale, with 1 relating to “none at all”, 6
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“moderate”, and 12 “very high”. Subject compliance was
monitored by regular email correspondence, and the return
of supplement organizer trays after each supplementation
period.

Red Pepper and Turmeric Supplements

Subjects ingested 2.8 g/d (for four weeks) TM, 1 g/d RP, or
PL, with treatments randomized, counterbalanced, and
double-blinded. The spices and PL (refined, white rice flour)
were contained in identical looking blue gelatin capsules
(two per day for RP or PL, five per day for TM or PL), and
prepared by the McCormick Science Institute (Sparks, MD).
The capsules were arranged by day of the week in supple-
ment organizer trays with locking lids. Half of the capsules
were consumed in the morning, and the other half in the
evening, for each day of each 4-week periods of the study.

Body Composition

Height was measured using a stadiometer, and body mass
and body composition were measured using a Tanita bioelec-
trical impedance (BIA) scale (Tanita Corporation of America,
Inc., Arlington Heights, IL). Subjects were measured while
standing erect, wearing light clothing, with bare feet on the
analyzer foot pads.

Blood Pressure, Augmentation Index, Serum Diagnostic
Chemistries

Blood pressure was measured by technicians following a
15-min seated rest. The SphygmoCor Central Blood Pres-
sure and Pulse Wave Velocity Assessment System (AtCor
Medical, Atasca, IL) was used to measure the augmentation
index. The SphygmoCor system derives a calibrated blood
pressure waveform at the ascending aorta from a peripheral
pressure waveform, recorded non-invasively at the radial
artery using a high-fidelity pressure transducer. Augmentation
index, a measure of systemic arterial stiffness, was calculated
as the ratio of amplitude of the pressure wave above its
systolic shoulder to the total pulse pressure, and then
normalized to a resting heart rate of 75 beats per minute
(AIx@75). Blood samples were drawn from an antecu-
bital vein with subjects in the seated position for at
least 15 min after an overnight fast. A serum compre-
hensive diagnostic chemistry panel was performed by
our clinical hematology laboratory.

Plasma Cytokine Measurements and C-Reactive Protein

Total plasma concentrations of seven inflammatory cyto-
kines (interleukin-6 or IL-6, tumor necrosis factor alpha or
TNFα, interferon gamma or IFNγ, IL-1β, IL-8, IL-10, IL-

12p70) were determined using an electrochemilumines-
cence based solid-phase sandwich immunoassay (Meso
Scale Discovery, Gaithersburg, MD). All samples and pro-
vided standards were analyzed in duplicate, and the intra-
assay CV ranged from 1.7 to 7.5 %, and the inter-assay CV
2.4 to 9.6 %, for all cytokines measured. The minimum
detectable concentration of IL-6 was 0.27 pg.ml−1, TNFα
0.50 pg.ml−1, IFNγ 0.53 pg.ml−1, IL-1β 0.36 pg.ml−1, IL-
8 0.09 pg.ml−1, IL-10 0.21 pg.ml−1, and IL-12p70
1.4 pg.ml−1. Pre- and post-supplementation samples for the
cytokines were analyzed on the same assay plate to
decrease inter-kit assay variability. CRP was measured using
an LX-20 clinical analyzer (Beckman Coulter Electronics,
Brea, CA).

Oxidative Stress

Plasma F2-isoprostanes were determined using gas chroma-
tography mass spectrometry (GC-MS). Free F2-isoprostanes
were extracted with deuterated [2H4] prostaglandin F2α
added as an “internal” standard, and then added to a C18
Sep Pak column, followed by silica solid phase extractions.
F2-isoprostanes were converted to pentafluorobenzyl esters,
subjected to thin layer chromatography, and converted to
trimethylsilyl ether derivatives. Samples were analyzed by a
negative ion chemical ionization GC-MS using an Agilent
6890 N gas chromatography interfaced to an Agilent 5975B
inert MSD mass spectrometer (Agilent Technologies, Inc.,
Santa Clara, CA). Oxidized LDL was measured using stan-
dard protocols for a competitive ELISA kit (CV09.7 %)
(Mercodia Oxidized LDL Competitive Enzyme-Linked Im-
munosorbent Assay, Mercodia Inc., Sweden).

Metabolomics Procedures

Samples were prepared for metabolomics profiling by spik-
ing 300 μl of serum with 1.05 ml aliquot of two internal
standards (0.2 mg/ml of p-chlorophenylalanine and hepta-
deconic acid in a 3:1 methanol/chloroform solution), deri-
vitized with methoxyamine, and analyzed on an Agilent
7890A GC system coupled to an Agilent 5975C EI/CI Mass
Selective Detector (Foster City, CA). The raw data files
generated by GC-MS were converted to NetCDF format
and processed using ChromaTOF software (v4.24, Leco
Co., CA, USA). Metabolite annotation was performed by
comparing unknown signal patterns from the study samples
to those of reference standards from an internal library
containing approximately 600 human metabolites (Sigma-
Aldrich, St. Louis, MO) and the NIST and Leco/Fiehn
metabolomics libraries. The average CV for heptadecanoic
acid was less than 5 %. The mean CV of the internal
standard across the entire sample analysis (158 injections)
was 15.3 %.
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Statistical Procedures

Data are reported as mean ± SE. Data for each supplementation
group (RP and TM) were analyzed using a 2 (condition) x 2
(time) repeatedmeasures ANOVAbetween subjects model, with
pre- to post-supplementation changes calculated and compared
using a Student’s t-test. Diet record and symptom log data were
analyzed in a similar fashion using a 2 × 2 repeated measures
ANOVA. For the metabolomics data, all initial mathematical
calculations including peak signal compensations, normalization
to internal standards, and univariate analyses (nonparametric
Mann–Whitney-Wilcoxon test) were performed using custom
scripts in MATLAB R2010a (MathWorks, Inc., Natick, MA).
Multivariate statistical analyses including principal component
analysis (PCA) and partial least square - discriminant analysis
(PLS-DA) were performed using SIMCA-P 12.0.1+ (Umetrics,
Umeå, Sweden). PLS-DA was used to visualize the difference
between global metabolic profiles for the three groups, with Q2Y
used for the predictive accuracy of the model (values of 0.4 or
greater indicate a reliable model).

Results

Thirty-one (age 57.7±1.6 y) and 30 (age 55.7±1.4 y) female
subjects completed all requirements for the RP and TM
studies, respectively. Three subjects were unable to comply
with the supplementation regimen and dropped out of the
study. Figure 1 depicts a scatterplot relationship between
BMI and pre-study CRP for all 61 subjects (r00.25, P0
0.048). BMI was 34.7±0.9 and 34.5±0.8 kg/m2, and CRP
7.64±0.82 and 8.05±1.33 mg/l, for the RP and TM groups,
respectively.

Supplementation with 1 g/d RP or 2.8 g/d TM over a 4-
week period had no influence relative to PL on body weight,
percent body fat, systolic blood pressure, augmentation index,
serum glucose (Table 1), inflammation and oxidative stress
biomarkers (Table 2), and all components of the diagnostic
chemistry panel (data not shown). Data from the symptom
logs indicated no difference pre- to post-supplementation

relative to PL except for significant increases in heartburn
and bloating symptoms in the RP group (data not shown).
Three day food records revealed no pre- to post-4 week differ-
ences for energy, macronutrient, and micronutrient intake for
RP and TM relative to PL (data not shown).

Score plots from the PLS-DA models visualized the
global metabolic differences between RP and PL conditions
(Fig. 2a) and TM and PL conditions (Fig. 2b) using ratios
(pre- to post-supplementation). The Q2Y scores of the two
PLS-DA models were below 0.4 (0.245 for RP, and 0.212
for TM), indicating that the global metabolic profile differ-
ences between 4-week supplementation periods with RP and
TM compared to PL were non-significant.

Table 3 summarizes significant fold change comparisons
between spice and PL conditions for individual metabolites.
Fold changes were relatively small and disparate, with no
consistent change pattern established for metabolite clusters
or pathways. The small fold change (1.3) for the four metabo-
lites related to RP supplementation had no apparent connection
with each other. An equally dissimilar list of 10 metabolites for
TM (fold change range of −1.6 to 1.4) included a decrease for
an essential fatty acid (linolenic acid) and a decrease for a
medium chain fatty acid (nonanoic acid), an increase in an
essential amino acid (lysine), a decrease in a carboxylic ester
(1,2-benzenedicarboxylic acid, diisooctyle ester), and changes
in three amine-related metabolites (n-butylamine, trimethyl-
amine, and 4-hydroxy-proline).

Discussion

Four weeks supplementationwith 1 g/d RP (~10mg capsaicin/d)
or 2.8 g/d TM (~112 mg curcumin) had no influence on inflam-
mation, oxidative stress biomarkers, or arterial stiffness relative to
placebo in overweight/obese females with underlying systemic
inflammation. This interpretation was strengthened utilizing a
strong research design and the tool of metabolomics that
showed no trial differences in global metabolic scores.

Spices possess many unique functional food properties
that make them attractive for use as supplements or inclu-
sion in healthful food products. TM and RP have high
antioxidant content [16], and cell culture data support strong
anti-inflammatory activity through a variety of pathways
[1, 3]. Few randomized, placebo control studies in non-
diseased humans, however, have been conducted with indi-
vidual spices. Culinary-level doses of RP and TM were
chosen, with supplements used for a relatively short time
period by systemically inflamed but otherwise healthy
females, and measured no apparent benefits on body weight,
serum glucose, arterial stiffness, inflammation, and oxida-
tive. Ahuja et al. [5, 6] reported no alterations in arterial
stiffness, disease risk factors, and total antioxidant status in
36 subjects consuming 30 g/d of a chilli blend supplement

Fig. 1 Scatterplot relationship between BMI and pre-study CRP for all
61 subjects (r00.25, P00.048)
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(55 % cayenne chilli) using a 4-week, randomized, cross-
over design. No differences in weight change between
groups of overweight men and women consuming 6 mg/d
capsinoids or placebo for 12 weeks was measured by
Snitker et al. [7], but a small but significant capsinoid
advantage in abdominal fat loss was reported. Fasting plas-
ma glucose and lipids were unaltered in 11 healthy, young

adult subjects supplemented with 2.8 g/d TM for four weeks
[8].

The lack of support in human studies for alterations in
disease risk factors, inflammation, and oxidative stress when
consuming RP or TM may be related to several factors
including dosing paradigms, and absorption, distribution, me-
tabolism, and excretion. The daily intake of capsaicinoids in

Table 1 Influence of RP
(n031) and TM (n030)
supplementation on body
weight, systolic blood
pressure, augmentation
index, and serum glucose

Variable Red pepper Placebo Turmeric Placebo Interaction P-values

Weight (kg)

Pre-study 92.0±2.7 92.1±2.7 91.5±2.0 91.2±2.1 0.831

Post-4 weeks 92.3±2.7 92.5±2.7 91.6±2.0 91.8±2.0 0.255

Body fat (%)

Pre-study 46.9±0.5 47.3±0.6 47.4±0.6 47.1±0.6 0.854

Post-4 weeks 46.2±0.7 46.5±0.6 46.9±1.3 46.7±0.6 0.890

Systolic BP (mmHg)

Pre-study 133±3.5 133±3.5 123±2.4 124±2.2 0.616

Post-4 weeks 132±3.2 133±3.3 126±2.6 126±2.1 0.716

ALX75

Pre-study 29.1±1.6 29.0±2.0 33.2±1.4 32.8±1.7 0.275

Post-4 weeks 27.5±2.0 30.9±1.7 33.6±1.3 31.2±1.1 0.281

Glucose (mmol/l)

Pre-study 5.45±0.17 5.56±0.17 5.76±0.21 5.82±0.38 0.206

Post-4 weeks 5.54±0.18 5.54±0.18 5.91±0.39 5.82±0.32 0.615

Table 2 Influence of RP
(n031) and TM (n030)
supplementation on
inflammation and oxidative
stress measures

Variable Red pepper Placebo Turmeric Placebo Interaction P-values

Serum CRP (mg/l)

Pre-study 7.64±0.82 9.48±1.71 8.05±1.33 7.44±0.98 0.091

Post-4 weeks 8.13±1.00 7.37±0.94 6.85±1.00 6.33±0.88 0.948

Plasma IL-6 (pg/ml)

Pre-study 2.96±0.85 3.43±0.96 3.19±0.66 2.73±0.48 0.064

Post-4 weeks 4.14±1.06 2.80±0.96 2.21±0.34 2.75±0.53 0.136

Plasma IL-8 (pg/ml)

Pre-study 4.81±0.40 5.14±0.52 4.93±0.51 4.85±0.49 0.177

Post-4 weeks 5.08±0.63 4.44±0.41 5.11±0.49 4.43±0.51 0.220

Plasma IL-10 (pg/ml)

Pre-study 3.92±0.64 3.78±0.50 4.24±0.63 4.25±0.83 0.812

Post-4 weeks 3.60±0.46 3.71±0.54 3.48±0.54 3.59±0.87 0.881

Plasma TNF-α (pg/ml)

Pre-study 6.08±0.78 5.79±0.52 6.97±0.63 6.33±0.61 0.811

Post-4 weeks 5.82±0.52 5.28±0.49 6.41±0.63 6.04±0.50 0.630

Plasma F2-isoprostanes (pg/ml)

Pre-study 95.1±4.0 99.8±4.3 88.8±2.6 91.2±3.3 0.744

Post-4 weeks 96.8±4.6 100±4.3 90.5±2.7 92.3±3.5 0.883

Plasma oxidized LDL (U/L)

Pre-study 50.5±4.7 47.8±3.7 48.8±2.9 52.2±3.2 0.599

Post-4 weeks 50.9±4.3 46.6±4.3 44.3±3.0 44.6±3.2 0.373
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selected Asian countries and Mexico is estimated to be 25–
200 mg/d, well above the dose used in this study [17]. The
metabolism of capsaicinoids occurs rapidly through liver
enzymes, and may limit bioactive effects [12]. Curcumin from
TM has low bioavailability in humans, and is extensively
conjugated in the intestine and liver, limiting in vivo bioactive
effects when compared to the impressive in vitro influences of
the parent molecule [13, 15]. For these reasons, attempts are
being made to complex large doses of curcumin with other
molecules to increase bioavailability and potential health
benefits [13, 19–21].

This is the first metabolomics-based investigation of the
influence of TM and RP supplementation on human health-
related outcomes, and the hypothesis was that this method-
ology would capture shifts in metabolites related to subtle
perturbations in inflammation and oxidative stress from
ingesting culinary levels of RP spice and TM. Data from
the GC-MS platform did not support this supposition, and
only small changes were measured in several disparate metab-
olites. Cell culture and animal studies on plant extracts from
fruits, vegetables, teas, spices, and herbs suggest that these can
act as potent anti-inflammatory, antioxidant, or anticancer
agents, and recent advances in metabolomics improve the
potential for discovering underlying mechanisms and overall
efficacy [22, 23]. The culinary levels of RP spice and TMused
in this study, the 4-week duration of the study, and the use of
overnight-fasted blood samples may have limited the potential
for significant metabolite shifts to occur and be measured.
Adding a liquid chromatography mass spectrometry (LC-MS)
platform to the metabolomics analysis in this study may have
increased the potential for measuring spice-related metabolites
[24].

In summary, 1 g/d RP or 2.8 g/d TM supplements ingested
for one month by systemically inflamed overweight and obese
women failed to alter inflammation, oxidative stress, or arte-
rial stiffness as measured through both traditional and metab-
olomics biomarkers. These negative findings should be
considered within the context of the culinary doses used for
four weeks, the biomarkers chosen for this study, and subject
numbers. Future research should emphasize higher doses,
spice mixtures and blends of selected phytochemicals, and
longer supplementation periods to determine if humans re-
ceive health benefits from spice ingestion [25–28].

Funding McCormick Science Institute

Fig. 2 Score plots for (a) red pepper and (b) turmeric from the PLS-DA models

Table 3 Fold changes in metabolites over four weeks, spice compared
to placebo conditions

Metabolites, red pepper vs. placebo Fold changes P

D-Ribofuranose 1.3 0.0203

Phosphate 1.3 0.0342

Phosphoric acid, 2-aminoethanol 1.3 0.0453

1,2-Benzenedicarboxylic acid,
diisooctyl ester

1.3 0.0493

Metabolites, turmeric vs. placebo

1,2-Benzenedicarboxylic acid,
diisooctyl ester

−1.6 0.0011

Linolenic acid −1.5 0.0023

Myo-Inositol, phosphate −1.5 0.0032

Nonanoic acid 1.4 0.0076

Lysine 1.4 0.0085

n-Butylamine 1.4 0.0102

Trimethylamine −1.4 0.0113

4-hydroxy-proline 1.4 0.0152

d-Galactose 1.3 0.0180

3-Hydroxyisobutyric acid −1.3 0.0335
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